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M O T I O N  O F  AN A I R F O I L  N E A R  A F L A T  S C R E E N  

D. N. G o r e l o v  a n d  S. I. G o r l o v  UDC 533.69.01 

The problem of motion of an airfoil near a screen is not only of practical but also of theoretical interest. The proximity 

of the screen changes the nature of the dependence of the aerodynamic characteristics on the angle of attack and airfoil shape 

which prevail in an unlimited stream. Moreover, a strong mutual influence of the parameters of the problem is observed, 

casting doubt on its solution by methods of thin-wing linear theory [1, 2]. 

In the general formulation, without any simplifications, the problem was solved in [1, 3] by the method of conformal 
mappings. However, the results of calculations by this method were published only for the case of a plate [2, 3]. 

In the present paper, the boundary-value problem of flow past an airfoil moving near a screen is reduced to a system 

of integral equations that do not degenerate in the limiting case of an infinitely thin airfoil. These equations are solved by an 

improved method of discrete vortices, which permits a highly accurate calculation of distributed and overall aerodynamic 
characteristics for airfoils of any thickness. The calculation results presented show a significant influence of airfoil thickness 
on the nature of the dependence of the aerodynamic characteristics on the angle of attack and on the distance of the airfoil from 

the screen. 

1. Consider an airfoil L moving at a constant velocity above a flat screen in an ideal fluid. We introduce the coordinate 
system Oxy fixed in the airfoil, the O axis being directed along the screen. Let V** be the velocity of inverted motion of the 

fluid at an infinite distance from the airfoil, b, the airfoil chord, H, the distance of its trailing edge from the screen, and ce, 

the angle of attack (Fig. 1). The corresponding boundary-value problem for complex velocity V(z) in the plane of complex 
variable z can be reduced to some integral equations in the tangential component of velocity Vs(z) on contour L. Such equations 
may, in particular, be the following: 

Im{e~Cz)Vo(z)} = 0, z E L; (1.1) 

1 
V(z) = Re{e~tZ)Vo(z)}, z E L. (1.2) 

Here 0(z) is the angle between the tangent to the airfoil at point z and the Ox axis; 

1 
~o(O = v + ~ f r(~, ~)vcz;)e-'C~)~; (1.3) 

L 

x 1 (1 .4 )  X(z,~)=,_r ,-~" 

The particular integral in (1.3) is understood in the sense of the Cauchy principal value. 

Note that Eqs. (1.1) and (1.2) can be solved independently of one another. In the limiting case of flow around a small 
airfoil profile, these equations degenerate, taking the same form on the upper and lower sides of the airfoil. 

As in [4], from independent Eqs. (1.1) and (1.2) one can obtain a system of two simultaneous integral equations that 
do not have a parametric singularity associated with the airfoil thickness. This system is of the form 

Im{e~CZP~o(z l) - e~Cz2)V0(z2)} ffi 0; 

l lV(zl)  - V(z2) } = Re{e~C~PVo(zl) - e~(h)Vo(z2)}, 

(1.5) 

(1.6) 
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where z 1 E L I ;  z 2 E L2; contours L 1, L 2 determine the upper and lower sides of the airfoil, and points z l, z 2 correspond 
to one another in the sense that in the limiting case of  an inf'mitely thin airfoil (airfoil profile), they become a single point. 

The system of Eqs. (1.5), (1.6) will be solved by the discrete vortex method. For this purpose, we introduce the 

intensities of vortex layers qq(Zl), ~,2(z2) on contours L 1, L 2, assuming that 7r(Zr) = -Vs(zr) ,  r = 1, 2. The vortex layers on 

L1, I..2 are divided into N elements. We replace the vortex layer on each element by a single discrete vortex I'm (r), placing it 

at the point zm (r) (m = 1 . . . . .  N; r = 1, 2). We select on the same elements certain other points Z0k (r) E L r (k = 1 . . . . .  N; 

r = 1, 2) and require that Eqs. (1.5), (1.6) hold at these points. Then Eqs. (1.5), (1.6) with z r = Z0k (r) (k = 1 . . . . .  N; r = 

1, 2) become a system of 2N equations in which, in accordance with (1.3), (1.4), 

l-L- f ~'r-c') ~2)72(~2)e- ~c:,,~,. (1.7) -Vo(z~) = v - l'2-'z~i f K(z~" ~l ) r l (~ l )e -~ 'CCPa~l  - z n i  a - - ,~a~ ,  
L 1 L 2 

The integral expressions in (1.7) will be approximated by quadrature formulas containing discrete vortices. Let us 

assume that the points Z0k(r), Zm (r) belong to the same contour. Then the integrals under consideration may be approximated 

by the formula [5] 

l--L- f x ' t - ( ' )  e -  ~'r z N 
~,)7,(~,) ~ ,  = ~ ~ rr z c')) (1.8) 

2 ~ i  J - - x ' ~ ~  2 ~ i  m ~- ok ' m - "  
L e m = l  

Let 7_Ok (r), Zm(P) lie on different contours (p ~ r; p, r = 1, 2). In that case, an approximation of the type of (1.8) 

proves insufficient if point zm(P) is near contour L r. Therefore, for p r r, the following quadrature formula was chosen: 

~,)~, , (~,)  a~ ,  = ~-i - , ~ ,  2.~i m, 
L e m m 1 

J (1.9) 
+ ---I~(,) Jr) (gO, h 

2a" * o ,  x 0 ~ / , P ~ r ,  

where 
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(1.10) 

Here ~'k- 1 (r), ~'k (r) are complex coordinates of the ends of the k-th element of the vortex layer on contour Lr; Ak (r) is the length 

of this element; x = 1 if {Z0k (1) -- Z0k (2) ] + {Zk (I) -- Zk(2) ] < 2Ak(r); x = 0 in other cases. 
The function gk (r) makes it possible to determine the tangential velocity component of the fluid (to the element [~'k_l (r), 

~'k (r)] E L r )  at the point Z0k (p) E Lp for p ;a r (p, r -- 1, 2). We note that in formula (1.10), the points Z0k (p) Should not 
coincide with the ends of  the elements of  the vortex layer along Lp(Z0k(P) ~ ~'k (p), p = I,  2). 

Substituting expressions (1.7)-(1.10) into (1.5), (1.6) when z r = Z0k (r) (k = 1 . . . . .  N; r = 1, 2) and replacing 

Vs(Z0k  (1)) - -  V s ( Z 0 k  (2)) b y  r k ( 2 ) / A k ( 2 )  - -  l ' k (1 ) /Ak(1 ) ,  w e  o b t a i n  a s y s t e m  o f  2N linear algebraic equations in intensities of 
discrete vortices. 

To calculate the distributed and overall aerodynamic characteristics, we developed an algorithm permitting a highly 

accurate determination of these characteristics for airfoils of any thickness, including a thickness as small as desired. This 
algorithm makes use of  a special approximation of the contour in the immediate vicinity of  the leading edge of the airfoil, and 

the corresponding approximation for the functions .yl(Zl), -y2(z2) in terms of the given values I 'I(D . . . . .  PN (2). 
2. The calcUlation was carried out for a symmetric Joukowski airfoil. The upper and lower sides of the airfoil were 

divided into N elements of equal length A. Discrete vortices were placed at a distance of A/4, and the control points, at a 

distance of 3A/4 from the origin of each element. On the f'trst elements (k = 1), the control point was shifted back by 0.05A, 
making it possible to obtain a highly accurate calculation of the intensity of discrete vortices FI(1), Fl(2) in the limiting case 
of an infinitely thin airfoil [6]. The calculation algorithm was tested with known solutions of  the problems of flow of an 

unlimited stream around a Joukowski airfoil and motion of a plate near a flat screen [2, 7]. 
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The numerical experiment was carried out with airfoils of relative thickness c = 0, 0.1, 0.2 over a wide range of 

angles of attack c~ and h = H/b. The number of discrete vortices on each side of  the airfoil was chosen as N = 40, which in 

testing the relative calculation error gave < 1%. We calculated the standard aerodynamic coefficients C x, Cy, and C m, which 

determine the overall aerodynamic forces R x, Ry and the moment M about the leading edge of the airfoil, the dimensionless 

distance of  the pressure center from the leading edge C d = Cm/(Cy cos ~ - Cxsin ~), and the distribution of pressure along 

the screen and airfoil contour - the coefficient Cp = 2(p - p~,)/(pV=2), where p is the density of  the fluid and p and p=  

are, respectively, the hydrodynamic pressure at the point under consideration and at an infinitely distant point. 

The main objective of the numerical experiment was to determine the influence of the relative thickness of  the airfoil 

on its aerodynamic characteristics. Of great interest for practical applications are the dependences of  the lift coefficient Cy on 

the angle of attack and on the distance of  the airfoil from the screen. The calculation results presented in Figs. 2 and 3 show 

a substantial influence of airfoil thickness on these dependences, especially at small angles of  attack and a short distance h from 

the screen. Note that the influence of  airfoil thickness on Cy = Cy(o~, h) was found to be stronger than in the case of  the 

calculated data in [2], which were obtained in the approximation of linear theory. An analogous nature of  the influence of airfoil 

thickness is observed for the moment coefficient C m (C x = 0). 

Figure 4 shows the position of the pressure center on the airfoil as a function of the parameter b/H at different angles 

of attack and different relative thicknesses of  the airfoil. This dependence at c = 0 (plate) is consistent with the results of  [7]. 

For a solid airfoil (c ;~ 0), the pressure center can move substantially with a small change of the angle of  attack near the values 

of ~ at which Cy = 0 and C m = 0 (Fig. 5). 

Wall thickness also strongly affects the distribution of pressure over the lower side of  the airfoil and over the screen, 

especially at negative angles of  attack. As an example, Fig. 6 shows the distribution of pressure, generated by an airfoil of 

relative thickness c = 0, 0.1, 0.2, along the screen. The trailing edge of  the airfoil is separated from the screen by a distance 

equal to one-half the chord (h = 0.5), and the angle of attack is ~ = 5, 0, 5 ~ The value x = 0 corresponds to the leading 

edge of  the airfoil, and x = b corresponds to the trailing edge. The above results are in qualitative agreement with the data 

of [8]. 

48 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

. 

. 

L. I. Sedov, Planar Problems of Fluid Dynamics and Aerodynamics [in Russian], Nauka, Moscow (1980). 
M. A. Basin and V. P. Shadrin, Fluid Dynamics and Aerodynamics of a Wing Near an Interface [in Russian], 

Sudostroenie, Leningrad (1980). 
S. Tomotika, "The forces acting on an aerofoil of approximate Joukowski type in a stream bounded by a plane wall, ~ 

Quart. J. Mech. Appl. Math., 4 (1951). 
D. N. Gorelov, "Integral equations of the problem of flow around an airfoil," Izv. RAN. MZhG, No. 4 (1992). 
S. M. Belotserkovskii and I. K. Lifanov, Numerical Methods in Singular Integral Equations [in Russian], Nauka, 

Moscow (1985). 
D. N. Gorelov, "Convergence of the discrete vortex method, based on a local approximation of the vortex layer, ~ 
Dynamics of Continuous Media: Collected Works [in Russian], USSR Academy of Sciences, Siberian Branch, Institute 
of Fluid Dynamics, No. 68 (1984). 
V. A. Tselishchev, "Influence of the free surface (of a screen) on the stationary characteristics of a thin airfoil, ~ 
Hydrodynamics of Submerged Profiles: Collected Works [in Russian], USSR Academy of Sciences, Siberian Branch, 

VTs (1986). 
A. M. Timerbulatov, "Calculation of the flow of a nonviscous incompressible fluid around a wing of finite thickness 

in the presence of a screen," Uchen. Zap. TsAGI, 16, No. 6 (1985). 

49 


